Unexpected Treasures

University Archives is full of intriguing artifacts. Historian Kevin Leonard offers an inside look.

p. 20
Theater professor Ana Kuzmanić’s costume design brought a school of piranhas to life in the Metropolitan Opera’s production of Florencia en el Amazonas. Directed by performance studies professor Mary Zimmerman ’82, ’85 MA, ’94 PhD, Florencia follows a Brazilian opera singer as she searches for her lost lover in the jungle. Lead costume designer Kuzmanić ’04 MFA developed the concept for the segmented headpieces, which were crafted from fosshape (a nonwoven fabric that hardens when heated). Flexible connectors were added between the fish head and tail to create the illusion of fish swimming as the dancers move. Master of fine arts design students in Kuzmanić’s Opera at the Met course learned about costume and set designs and traveled to New York City to observe production rehearsals for the show, which ran from Nov. 16 to Dec. 14, 2023.
## Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Global Rhodes Scholar</td>
</tr>
<tr>
<td>9</td>
<td>Building on the Moon</td>
</tr>
<tr>
<td>26</td>
<td>How Do Kids Learn Best?</td>
</tr>
<tr>
<td>30</td>
<td>A Guy Walks into a Bar</td>
</tr>
<tr>
<td>38</td>
<td>“People don’t always buy what you make — they buy why you make it. ... So when I’m crafting a new recipe, I’m always thinking, ‘How can I tell a story on a plate?’” — Maya-Camille Broussard ’04 MA, bakery owner and star of Netflix’s Bake Squad</td>
</tr>
<tr>
<td>11</td>
<td>Big Research on Tiny Things</td>
</tr>
<tr>
<td>20</td>
<td>Give Me an N! ... Give Me a U!</td>
</tr>
</tbody>
</table>

### Building on the Moon

Researchers plan to 3D-print a lunar landing pad using the moon’s own materials. But first they need to analyze what moon dust is made of (and nope, it’s not cheese).

### How Do Kids Learn Best?

Northwestern researchers and alumni offer tips to help young children reach their full potential.

### A Guy Walks into a Bar

Art Johnston ’75 MFA, left, met the love of his life, Pep Peña, right, 50 years ago in a gay bar. Together they founded an innovative nightlife spot that became a hub for the queer rights movement in Chicago.

### “People don’t always buy what you make — they buy why you make it. ... So when I’m crafting a new recipe, I’m always thinking, ‘How can I tell a story on a plate?’” — Maya-Camille Broussard ’04 MA, bakery owner and star of Netflix’s Bake Squad
MORNING SHOW STAR
My mornings are not complete if I have not met with Sheinelle Jones [’00] “Stepping Into Today,” winter 2024. Your depth of preparation and your tightness are a complement to your stint on Sheridan Road, Bishop Perry ’74, Oakton, Va.

I met Sheinelle some years ago at my very first National Association of BlackJ most important. I still remember her advice and words to this day. Sierra Boone ’27, Detroit

Mundane SELFISH PEOPLE
Your 2024 edition includes a wonderful feature on Matthew Vacca ’22 [’21 MBA] Marine Veteran Supports Ukraine, “Class Notes, winter 2024” and his tremendous support to Ukraine. In the same edition, you are the editor of the In Memoriam section which I greatly appreciate. And Kevin Webb ’74, who passed away on July 29, 2023, while serving a humanitarian assignment in Ukraine, “Class Notes, winter 2024” and his tremendous support to Ukraine. I was blessed to receive her MD, she was diagnosed with cancer and died in August 1984. I was pinned in the NICU, and will celebrate 38 years of love again with each other and my congratulations to Jennifer Dann Meyers ’83 Atlanta

LOVE AFTER LOSS
I don’t usually respond to stories on the internet, but the report of the story of two lovebirds, Kate Furlan ’00 and Matthew Vacca [’21 MBA] “Finding Love After Loss,” Class Notes, fall 2023] read it one. I met my wife, Miriam Bashore [’72], at Northwestern in an organic chemistry lab — we were lab partners — and I’ve been married. In 1970 and both graduated with bachelor of science degrees in chemical engineering in 1972. Our planned family of two became three when the second pregnancy in 1976 was twins. In 1980 my wife entered medical school at the age of 30, and I worked full time and raised our three children as a single father. In the same edition, you are the editor of the In Memoriam section which I greatly appreciate. Jennifer Dann Meyers ’83 finished her MD, she was diagnosed with cancer and died in August 1984. I was devastated.

But like Annie and Matthew, I knew I had to go forward. I am working with an outstanding woman who has tremendous ambition and who has been with a couple of different parts of the world. Thank you, Matthew, for your friendliness, and Andrew, for your service and ultimate sacrifice. John Klingensteiner Franklin, Mass.

MISSING PODCAST PRODUCER
The winter 2024 issue omet Paul Caplan ’83 from the article about the Wiser Than Me podcast hosted by Julia Louis-Dreyfus [’83, ’97 H] “Wiser Than Me,” creation, winter 2024]. Paul is a producer of the podcast and have been mentioned. Additionally, Paula was Julia’s Northwestern roommate, and they remain good friends today. Jennifer Dann Meyers ’83 Atlanta

What’s the Buzz About Quantum?
By Prem Kumar

A global quantum revolution is underway. Quantum physics is an exploration of light and matter at the most fundamental level. More than an intriguing curiosity, it is essential to creating real-world technologies that will revolutionize our lives.

Certainly, quantum physics will continue to yield deep insights into the fundamental workings of the universe, such as the behaviors of black holes. But the field is also providing insights into how individual atoms and molecules interact with light, forming a basis for new electronic and photonic technologies. Quantum scientists today are conducting applied research that could lead to the creation of more secure communications systems; enhanced navigation devices for use in difficult environments; and superior computational capabilities that can simulate the interactions between atomic and molecular structures. Such simulations could help speed up the development of pharmaceutical drugs and materials for solar energy harvesting.

For example, in one test of an emerging quantum technology, scientists from China used a low Earth-orbit satellite to distribute entangled photons (particles of light) to two ground stations that are more than 1,000 kilometers apart. (Entanglement is a quantum property that describes the connecting of two particles such that changing the state of one particle changes the state of both, no matter how far apart they are.) This technological achievement is a harbinger of future possibilities for globally secure, encrypted communications.

To understand the role quantum technologies will play in our future, consider the rapid progress that classical computer processing has made since the mid-1990s. Technological development has generally followed Moore’s law — the observational principle that the number of transistors on a microchip doubles every 18 months or so. The results are stunning: A smartphone today is more powerful than most advanced supercomputers of the 1990s.

But after being on such an exponential trajectory for more than four decades, Moore’s law is running out of steam because any individual computer is rapidly approaching its fundamental limit: single atoms. Quantum computing could allow us to surpass these material limits and process calculations that would overwhelm current supercomputers.

The challenges of building — and controlling — a quantum computer, however, are multifold. For example, the qubits (quantum bits that form the computational state) on one hand must be isolated from their environment to maintain their quantum behavior, but on the other hand must interact with the outside world in just the right way to accept and follow the instructions of a quantum computer. This is where entanglement comes in.

To understand the role quantum computers could allow us to surpass these material limits and process calculations that would overwhelm current supercomputers. Continued development in quantum engineering will require technological innovation across the interface of quantum and the world as we know it — that is, in control and computing.

Quantum engineering cannot happen in isolation. We must continue to work across traditional branches of science and engineering. We must create and sustain research communities that will be equally versed in quantum physics and their own area of technology. And we must create quantum technologies in an environmentally conscious way. The sustainability of quantum technologies must be a forethought from the outset.

Prem Kumar is professor of electrical and computer engineering in the McCormick School of Engineering.

© 2024 Northwestern University. Northwestern Magazine is published in fall, winter, spring, and summer by the Northwestern University School of Engineering. We reserve the right to change or cancel subscriptions, at the University’s discretion. View expressed in Northwestern Magazine do not necessarily reflect the opinions of the editors or the University.

Address changes:
Mail: Class Notes Editor, Northwestern Magazine, 1830 Orrington Ave., Suite 300 Evanston, IL 60202
Email: address-change@northwestern.edu.
SOUND OFF

Lessons Learned
What wisdom did you learn the hard way?

Scott Freidheim ’87, ’91 MBA, managing partner at Freidheim Capital

At the 2006 World Economic Forum annual meeting in Davos, Switzerland, I was invited to a lunch hosted by the chairman and CEO of ABN AMRO, a large Dutch bank. There were 10 of us, including the marquee guest, Jean-Claude Trichet, head of the European Central Bank. The conversation was a master class on central bank policy; every other guest at the table was a CEO with about 50 years of relevant experience.

Among such formidable intellectual adversaries, I was weaponless, naked. The two-hour lunch felt endless. Just because you’re invited doesn’t mean you belong. Achievement stands on a foundation of preparedness.

Felicia D. Henderson, associate professor of radio/television/film

As a writer, director and producer for more than 20 years, I spent a lot of time as a Hollywood pretzel — bending and twisting myself into what others suggested I had to be. I wasn’t smart enough. I was too smart. I fought too hard for my vision. I didn’t fight hard enough. “You should work on making others more comfortable with you,” an agent once told me. After too many years of playing the pretzel girl game, I was suffering from anxiety and debilitating migraines, deftly hidden by a smile. I’ve learned you can connot yourself into a million doppelgangers, but someone will still have an issue with who you are. So, I’ve chosen to be my authentic self. The only changes I need to make are the ones that help me become a more kind, giving, ambitious, creatively courageous version of the person I already am.

Cydney Brown, sophomore majoring in communications from Philadelphia

It took almost giving up on my dream for me to learn that the only opinion of yourself that matters is your own. Writing poetry has always been the best way to express myself, but in February 2020 I almost quit because of negative comments I had received. So I took a self-love workshop. I did daily affirmations and continued to write about topics close to my heart. With this newfound confidence, I became the 2023 Northeast Regional Youth Poet Laureate.

Stephanie Boron ’52 MS, assistant clinical professor of communication sciences and disorders

I like to joke that I got a master’s degree in speech and language pathology to get better at making small talk. I didn’t know about my highly masked autistic brain at the time. More than a decade into my career, I stumbled upon online spaces where autistic folks were sharing their lived experiences. I began to notice the voices that were absent from my training — and I realized our practice may have been unintentionally perpetuating neuro-normativity. Then I became curious about the workings of my own brain. I began to center autonomy, accessibility, consent and genuine connection in my work. Now, in all that I do, I ask, “How might we amplify autistic voices?”

John Franklin ’18, right, and his brother Greg, left, won first place on the reality show The Amazing Race in December 2003. And the (alumni) crowd went wild!

Social Feeds

You two are so fabulass, I watched every episode rooting for you all the way! Congratulations!

Beverly Roberts Charles ’75, ’76 MS

We were cheering for them the whole time! NU represent!

Anne Suchandwa Swoboda ’03

Congratulations — the best Amazing Race so far. The top three teams were all great, but Greg and John were ALL Go Purple!

Luisa Ginnetti ’72

You are so talented and kind! Congratulations on the win! (As a fellow Northwestern alumnus, I am so proud of you.)

John Franklin ‘18, right, and his brother Greg, left, won first place on the reality show The Amazing Race in December 2003. And the (alumni) crowd went wild!

By Andrew Youn ’06 MBA, ’10 H

Andrew Youn is co-founder of One Acre Fund. He lives in Kigali, Rwanda.

One Acre at a Time

During my first year at the Kellogg School of Management as a speaker from Abbott Laboratories came to campus to describe their work providing HIV tests in sub-Saharan Africa. I grew up in St. Paul, Minn., and had not traveled abroad extensively. But that speech inspired me to pursue a summer internship in South Africa.

During my internship, I visited Kenya and met two farmers: One was shockingly poor, and her family was clearly suffering, while her neighbor thrived, producing four times as much food. Both farmers were some of the most industrious people I had ever met — but one lacked access to basic farming tools and techniques. Those two farmers sparked the idea for One Acre Fund: Could we equip the hardest-working people on Earth with the basic farm inputs and training required to thrive? It takes a village to turn an idea into a nonprofit organization. The first time I asked someone for donations — I asked classmate Matt Forti ’00, ’06 MBA for $20 a month — I was so nervous that my voice was shaking. He not only supported me but enlisted the help of a hundred other classmates, formed our original board of directors and joined the staff full time. Since then, he has helped raise tens of millions of dollars for our work. Larry Levy ’66, ’67 MBA, Carol Neims Levy ’64 and an anonymous donor provided major seed funding, together with several Northwestern-affiliated families, including the Knights, Combes and Wilsons. Kellogg professors such as Harry Kraemer ’79 MBA and the late Barry Merkin and Wally Scott ’53 jumped in. And One Acre Fund got off the ground.

Today we provide training and small loans (in the form of farm inputs such as seed, micro-dosed fertilizer and tree seedlings) to 4 million farm families across nine countries in eastern and southern Africa. We have 8,000 full-time staff, and more than 20 Northwestern alums have worked with the organization to date.

In the early days of One Acre Fund, I stayed overnight with a farming family in Bungoma, Kenya. I witnessed their affection for each other. I sang with them and listened to their hopes and dreams. The next morning, I joined them in the field. But after 20 minutes of hoeing the field, I had to stop — I just couldn’t keep up. This helped me understand just how hard farming is.

This understanding is a foundational reason that we’ve been successful. Our staffers live in close proximity to the farm families and listen to them. We recruit humble people with potential and then invest in their careers. And farmers have a stake in our organization; they pay for our services, and we are invested together in their future.

We also learn from failure. Farming is tough business, and I have seen families grapple with weather catastrophes, health issues and other disruptions to their way of life. Every time we fail, we learn. After a crop disease caused losses for many of our farmers, for example, One Acre Fund started a tree-planting program. Today we help farmers plant more than 50 million wood and fruit trees each year.

Our goal is to serve 10 million families a year by 2030. No matter the numbers, however, I remain inspired by the individual farmers we work with. Every day it is my privilege to serve the hardest-working people on Earth.

John Franklin ‘18, right, and his brother Greg, left, won first place on the reality show The Amazing Race in December 2003. And the (alumni) crowd went wild!

My Northwestern Direction

By Andrew Youn ’06 MBA, ’10 H

Andrew Youn is co-founder of One Acre Fund. He lives in Kigali, Rwanda.

Illustration by Bruce Morser
WHAT INSPIRES ME

Hip-Hop History

Melissa Foster believes rap music should be accessible to everyone.

Y'all, rapping is hard work. Doing it well takes an incredible amount of skill. I have a lot of students who are intimidated by rapping, especially white students. They love rap but don’t think they could or should rap.

But rap is for anyone and everyone. Learning about hip-hop’s history, the how and why it was born, and tracing its 50-year timeline takes time and investment, but it’s worth it. Understanding the history makes rap more accessible.

Melissa Foster has worked as a recording studio musician and as a vocal coach for Broadway and rock stars. Now she teaches courses on the vocal techniques and history of musical theater, pop and rock. Her recent book Don’t Sweat the Technique: A Performer’s Guide to Hip-Hop and Rap provides an overview of hip-hop history, as well as a technical guide to rapping. This quote is adapted from the book’s introduction.

HEARD ON CAMPUS

Looking Back, Looking Forward

Faculty, staff and alumni take notes from the past as they dream of a better future.

"We hope that people will recognize that Indian law is American law, and there [should be] no [law-making] or policymaking that does not consider Indigenous peoples." Megan Bang, professor of learning sciences and director of the Center for Native American and Indigenous Research (CNAIR), at a conference co-hosted by CNAIR and the Northwestern Pritzker School of Law

"Sometimes for us today, it feels ... hopeless. It feels like we can’t make a difference. But if you look at what [Martin Luther King Jr.] went through, if you look at what he survived ... it fills us with the sense that we can go on." Jonathan Eig '96, author of King: A Life, in his keynote address at Northwestern’s Martin Luther King Jr. Commemoration

"Write the kind of stories that you like to read. ... The publishing world is very variable. Things get hot, and things get cold. [Write] something that’s uniquely you." George R.R. Martin ’70, ’71 M.S., ’71 H., pictured at left, author of the book series A Song of Ice and Fire, in a conversation with students at the Medill School of Journalism, Media, Integrated Marketing Communications.

"There was no evidence that slavery would ever end. And yet ... our ancestors resisted. Most of them didn’t see the end in their lifetime, but they planted that seed in the next generation. ... I’m inviting people to strengthen ... our collective imagination and ... question those things that we’ve told are impossible." Ruha Benjamin, associate professor of African American studies at Princeton University, in conversation with School of Education and Social Policy Dean Bryan Brayboy

Martin visited campus for the investiture of the George R.R. Martin Chair in Storytelling.

"Each particle of [moon] dust is jagged and angular," says Katie Koube ’14, a materials scientist at robotics and AI company ICON Technology Inc. "So, if a rocket lands directly on the moon’s surface, it would create a lot of dust, and that dust would gum up the landing system."

HEARD ON CAMPUS
surface, it stirs up dust that sandblasts the whole area.” In 2022 NASA selected ICON for a $57.2 million grant to develop lunar construction technology. Because the cost of bringing traditional building materials from Earth is incredibly high, ICON is exploring the feasibility of 3D-printing a lunar outpost using the moon’s resources. (ICON already uses such technology to build homes on Earth.) Using a 3D printer, ICON plans to scoop up the moon’s soil, melt it down and then cool it to form ceramic. That variability poses a unique challenge, says Northwestern mineralogist Steven Jacobsen, because “different minerals in lunar dirt melt at different rates, [and] the 3D-printing process is very sensitive to changes in mineralogy.” Jacobsen, a professor of Earth and planetary sciences, has received funding from NASA Marshall Space Flight Center to help unravel the mystery of this destructive, varied moon dust. Jacobsen is a faculty affiliate with the Paula M. Titrement Institute for Sustainability and Energy and the Center for Engineering Sustainability and Resilience. “3D-world construction comes with many challenges,” he says. “On the moon, soil is formed from meteoroid impacts that have crushed the surface. So, the moon is essentially coated in a thick layer of pulverized rock. The types of minerals and glass found in lunar soil ... can vary widely within a small area.”

As the project’s principal investigator, Jacobsen is working closely with Koube, his former student, to analyze various samples of simulated moon dust using Northwestern’s facilities. Their goal is to create a library of potential soil compositions. Laura Gardner and Tirzah Abbott, doctoral students in Jacobsen’s lab, are using microscopy techniques to analyze eight lunar simulants designed to mimic the real thing. (Real moon soil is in limited supply.) They will also analyze synthetic plagioclase, a mineral that is a major constituent of moon rock. Then, the team will compare the lunar simulants to actual samples collected from the Apollo missions.

The researchers will study how the soil composition can affect the melting process used in 3D printing. Because no two scoops of lunar soil are the same, the 3D-printing technology needs to be nimble enough to handle subtle differences. Equipping the 3D printer with a library of all potential soil compositions will allow it to perform autonomous diagnostics of each scoop and then adjust its laser parameters for heating and cooling.

That way, says Jacobsen, “the printer will know how to process each scoop of moon soil to produce the best ceramic. That detailed library will play a part in making the imagined outpost a reality.”

**GREENLAND**

Greenland’s coastline is dotted with glaciers that are separated from the island’s central ice sheet — and those glaciers are in a state of rapid retreat, according to a Northwestern and University of Copenhagen study. Led by Laura Laroce ‘21 PhD, the research team compared current satellite images with historical aerial photographs of the coastline to track the changes in the lengths of more than 1,000 glaciers over the past 130 years. Although Greenland has experienced glacial retreat throughout the last century, the rate has accelerated over the past two decades, which have been marked by warmer summer air temperatures (up to 2 degrees Celsius warmer than the 1971-2000 baseline) and reduced snowfall. “Our activities over the next couple decades will greatly affect these glaciers. Every bit of temperature increase really matters,” says Laroce, who is an assistant professor at Arizona State University’s School of Ocean Futures.

**LIFE IN AN UNDERWATER CAVE**

The Yucatán Peninsula in southeastern Mexico is “a Swiss cheese of cave conduits,” says Magdalena Osburn, associate professor of Earth and planetary sciences. The region’s underwater cave system contains streams of freshwater, seawater and mixtures of both, in a variety of areas, including deep pits with no direct access to the surface and shallow siphons. Millions of people draw their drinking water from this cave system, says Osburn, “so whatever happens with the microbial communities there has the potential to be felt by humans.” To help from a cave-diving team led by Earth and planetary sciences professor Patricia Bedewy, researchers constructed a map of the microbial communities to better understand what lives in these subterranean labyrinths.

**IN THE BLINK OF A STAR**

An international team, including Northwestern astrophysicists, detected a new population of gravitational waves that are too big and change too slowly to detect. As a workaround, researchers instead study pulsars, a type of rotating neutron star that spins rapidly, sending radio waves sweeping through space. “We see little flashes of light that tick like a clock,” says Caitlin Witt, a postdoctoral fellow at Northwestern’s Center for Interdisciplinary Exploration and Research in Astrophysics and at the Adler Planetarium. Using ground-based radio telescopes at Arecibo Observatory in Puerto Rico as well as in West Virginia and New Mexico, the researchers look for changes in the timing of the flashes. “If the clock ticks arrive a little early or a little late, this is a sign that [the flash of light] could have been affected by a [monstrous but elusive] gravitational wave,” Witt says.

**SMALL WONDERS**

Big Research on Tiny Things

These researchers are studying tiny creatures and sometimes unseen changes to develop important research conclusions.

**THE MOLECULAR BASIS FOR CANCER**

According to the World Health Organization, by 2040 more than 70% of cancer deaths are expected to occur in low- and middle-income countries. Research associate professor of preventive medicine Mamoudou Maiga studies the molecular mechanisms underlying diseases, with an emphasis on infectious diseases and cancers. He identifies molecular indicators that are crucial for signaling the presence or progression of cancer. Maiga, director of translational research at Northwestern’s Center for Innovation in Global Health Technologies, seeks to improve public health outcomes in the developing world, where the majority of cancer cases are detected at late stages, leaving limited treatment options. For nearly two decades, he has focused on the development of preventive strategies and diagnostic tools in West Africa, including in his home country, Mali.

**SMALL WONDERS**

Big Research on Tiny Things

These researchers are studying tiny creatures and sometimes unseen changes to develop important research conclusions.

**THE MOLECULAR BASIS FOR CANCER**

According to the World Health Organization, by 2040 more than 70% of cancer deaths are expected to occur in low- and middle-income countries. Research associate professor of preventive medicine Mamoudou Maiga studies the molecular mechanisms underlying diseases, with an emphasis on infectious diseases and cancers. He identifies molecular indicators that are crucial for signaling the presence or progression of cancer. Maiga, director of translational research at Northwestern’s Center for Innovation in Global Health Technologies, seeks to improve public health outcomes in the developing world, where the majority of cancer cases are detected at late stages, leaving limited treatment options. For nearly two decades, he has focused on the development of preventive strategies and diagnostic tools in West Africa, including in his home country, Mali.

**OUR MYSTERIOUS MOON**

Susan van der Lee deciphers Earth’s secret seismic language. Movements in Earth’s crust are insidious, but van der Lee compiles seismic frequencies so they can be heard via Earthquakes, an app she co-developed. Figure 1 shows a volcano with a volatile eruption in Iceland last fall, the region experienced hundreds of earthquakes per day. On Earthquakes, the activity sounded like the symphony of doors slamming, hail palling a tin roof and people crashing into cubicle walls. The Sarah Rebecca Roland Professor of Earth and Planetary Sciences, van der Lee applies data science to millions of records of seismic research conclusions.

**SMART AND SUSTAINABLE**

Eric J. Perreault, the 1971–2000 baseline) and 2 degrees Celsius warmer than summer air temperatures (up to 2 degrees Celsius warmer than the 1971–2000 baseline) and reduced snowfall. “Our activities over the next couple decades will greatly affect these glaciers. Every bit of temperature increase really matters,” says Laroce, who is an assistant professor at Arizona State University’s School of Ocean Futures.

**LIFE IN AN UNDERWATER CAVE**

The Yucatán Peninsula in southeastern Mexico is “a Swiss cheese of cave conduits,” says Magdalena Osburn, associate professor of Earth and planetary sciences. The region’s underwater cave system contains streams of freshwater, seawater and mixtures of both, in a variety of areas, including deep pits with no direct access to the surface and shallow siphons. Millions of people draw their drinking water from this cave system, says Osburn, “so whatever happens with the microbial communities there has the potential to be felt by humans.”

**IN THE BLINK OF A STAR**

An international team, including Northwestern astrophysicists, detected a new population of gravitational waves that are too big and change too slowly to detect. As a workaround, researchers instead study pulsars, a type of rotating neutron star that spins rapidly, sending radio waves sweeping through space. “We see little flashes of light that tick like a clock,” says Caitlin Witt, a postdoctoral fellow at Northwestern’s Center for Interdisciplinary Exploration and Research in Astrophysics and at the Adler Planetarium. Using ground-based radio telescopes at Arecibo Observatory in Puerto Rico as well as in West Virginia and New Mexico, the researchers look for changes in the timing of the flashes. “If the clock ticks arrive a little early or a little late, this is a sign that [the flash of light] could have been affected by a [monstrous but elusive] gravitational wave,” Witt says.

**SMALL WONDERS**

Big Research on Tiny Things

These researchers are studying tiny creatures and sometimes unseen changes to develop important research conclusions.

**THE MOLECULAR BASIS FOR CANCER**

According to the World Health Organization, by 2040 more than 70% of cancer deaths are expected to occur in low- and middle-income countries. Research associate professor of preventive medicine Mamoudou Maiga studies the molecular mechanisms underlying diseases, with an emphasis on infectious diseases and cancers. He identifies molecular indicators that are crucial for signaling the presence or progression of cancer. Maiga, director of translational research at Northwestern’s Center for Innovation in Global Health Technologies, seeks to improve public health outcomes in the developing world, where the majority of cancer cases are detected at late stages, leaving limited treatment options. For nearly two decades, he has focused on the development of preventive strategies and diagnostic tools in West Africa, including in his home country, Mali.
Nia Robles Del Pino has been named a 2024 Global Rhodes Scholar.

A senior majoring in math and physics at Northwestern, she is the first Argentinian to receive the prestigious honor and the University’s 20th Rhodes Scholar to date. “I’ve met many brilliant Indigenous and brown girls who were ... simply told they weren’t smart enough for science,” says Robles Del Pino, an Andean Indigenous woman. She aspires “to increase the access to STEM education for Indigenous and Black people, especially for Latin American nonbinary individuals and women.” Robles Del Pino plans to study mathematical physics at the University of Oxford in England.

Flex Time

All-time leading scorer Boo Buie helped usher in a golden era for Northwestern basketball.

Or Wildcat guard Boo Buie, it all comes back to family. Growing up in Albany, N.Y., he learned to play basketball from his older brothers. His brother Talor Battle, Penn State’s all-time leading scorer, is now a Northwestern assistant coach — and Buie’s toughest critic. And among the many tattoos on his arm, Buie’s favorite features his mother’s initials alongside a lion and a rose because, he says, she’s sweet but also incredibly strong, having raised nine children.

At Northwestern, Buie ‘23 has found a second home. “From the time they recruited me, it was a family environment,” says Buie, who is pursuing a postgraduate certificate, “Northwestern’s coaches were the first ones who believed in me. And once I got here, I capitalized.”

In fact, Buie has become the face of Northwestern basketball, helping to revitalize the program.

In 2023–24 Buie, an All-Big Ten first team selection, led the Wildcats to the NCAA Tournament for the second consecutive season and only the third time in history. He’s been a part of 76 wins during his five-year tenure.

In February Buie became Northwestern’s all-time leading scorer in a 76–62 win over Michigan. After he broke the record, Buie soaked in the moment. Northwestern head coach Chris Collins embraced him as the crowd roared. “When I got here [as a freshman], there were so many open seats in the stands,” Buie said after the game. “Now, [I’m] walking off the court to a whole stadium standing on their feet, clapping. That’s what I’m most proud about, the change [my teammates and I] brought to the program.”

Collins says he feels lucky to be a small part of Buie’s journey. “Boo is like family to me,” he says. “His growth as a young man, as a leader, as a teammate, as a friend — it’s been unbelievable.”

HISTORY MAKER

Timeless Threads

A study of the sewing machine’s origins leads art history senior to a new perspective on vintage-inspired fashion.

ROWING IN ST. PAUL, Minn., senior Elizabeth Dudley loved sewing and working with textiles. Now, her hobby is a focus of her studies at Northwestern. As part of her History of Innovation class, co-taught by Farley Center for Entrepreneurship and Innovation director Hayes Ferguson and adjunct lecturer and startup founder Michael Saunders, Dudley did a deep dive into the history of the sewing machine, an invention that accelerated the evolution of fashion as a vehicle for personal expression. Today, social media has created a space for people to continue sharing and creating new fashion trends, says Dudley. Dudley, an art history major with a focus on the history of costume, is writing her honors thesis about one such trend: cottagecore — an aesthetic that reflects a pastoral way of life, expressed through fashion, home décor and other lifestyle elements.

Dudley’s thesis explores the effects of technology — from the invention of the sewing machine to the rise of social media — on fashion trends and self-presentation. Cottagecore, she says, represents a new form of cultural discourse emerging at the intersection of art and technology; though the trend itself romanticizes rural life and an escape from modern technology, its existence and popularity stem directly from the ease of sharing images online. “Cottagecore is a way for individuals to filter and visualize the world,” says Dudley.

‘CAT TALES

Reporter Boot Camp

Last summer, 84 rising high school seniors from around the world came to Northwestern to attend the Medill-Northwestern Journalism Institute. The four-week immersion program is not all that different from when it began under another name 90 years ago — offering aspiring journalists the chance to learn reporting, writing and editing from Medill School of Journalism, Media, Integrated Marketing Communications faculty and alumni media professionals. As the industry has changed dramatically over the decades, the institute continues to provide state-of-the-art journalism training.

Many program participants, or “Cherubs,” go on to study at the University, making up nearly 1.5% of all current Northwestern undergrads. Program alumni include Emmy Award–winning broadcasters, Pulitzer Prize–winning writers and media magnates.

NOW TRENDING

Elizabeth Dudley is writing her honors thesis on cottagecore, a viral fashion trend.

G

Saunders, Dudley did a deep dive into the history of the sewing machine, an invention that accelerated the evolution of fashion as a vehicle for personal expression. Today, social media has created a space for people to continue sharing and creating new fashion trends, says Dudley. Dudley, an art history major with a focus on the history of costume, is writing her honors thesis about one such trend: cottagecore — an aesthetic that reflects a pastoral way of life, expressed through fashion, home décor and other lifestyle elements. Cottagecore exploded in popularity in 2020 with the onset of the pandemic, drawing appeal from the chaotic time.
Is Farming the Key to Carbon Capture?

Northwestern and Chicago Botanic Garden researchers will study the carbon capture effects of soil additives on agricultural fields.

Many geologic processes are slow, even ones that are enhanced.” — Andy Jacobson

or the world to meet the global average temperature goals set forth in the 2015 Paris Agreement, we need to actively decarbonize. One way to decrease carbon emissions, suggests Earth and planetary sciences professor Andy Jacobson, is to capture atmospheric carbon dioxide (CO2) and lock it away for a few thousand years. Earth science could help with that.

The chemical weathering of rocks is a natural process that converts atmospheric CO2 into a stable mineral. Carbon dioxide dissolves in water to form carbonic acid, which breaks down rocks. Chemical weathering liberates calcium and other elements from silicate rocks while transforming CO2 into bicarbonate. Over millions of years, bicarbonate combines with calcium to form calcium carbonate, the building blocks for coral reefs and limestone. This process sequesters carbon in solid form and ultimately serves as Earth’s natural, long-term climate stabilizing mechanism.

“Over much shorter human timescales, bicarbonate is a sink for atmospheric CO2,” says Jacobson. “Can we accelerate the weathering process and actively remove carbon from the atmosphere at rates fast enough to help mitigate modern climate change?” Enhanced rock weathering was proposed as a decarbonization strategy decades ago but only recently gained interest. A 2020 Nature article estimated that enhanced weathering could remove up to 2 billion tons of CO2 annually from the atmosphere by 2050.

Jacobson is leading an interdisciplinary team of researchers at Northwestern and the Chicago Botanic Garden to investigate this “negative emissions technology” with a two-year demonstration grant from Northwestern’s Paula M. Titusens Institute for Sustainability and Energy. In a series of mesocosms (experimental systems that simulate natural conditions) at the garden, researchers will test the effects from adding different types of crushed rock to soils used to grow various crops. The soil additives will include basalt, a volcanic rock that chemically weathers faster than other rocks and minerals, potentially expediting CO2 capture and storage.

“In a greenhouse environment, we can measure the bicarbonate coming out of the mesocosms. And we can trace how much of that bicarbonate is coming from the weathering of silicate minerals,” says Allegra Tashjian, a doctoral student in Earth and planetary sciences. “Crush the rocks, put them on the field and wait. That said, the idea itself is so new that we don’t yet have sufficient empirical data to know the best way to approach it. How will soil amendments affect the soil microbiome and plants, and how much carbon will be converted? Our goal is to answer those questions.”

The market for enhanced rock weathering is skyrocketing, with startups already partnering with farmers on carbon offsets. “It’ll be awesome if enhanced rock weathering works well at scale,” adds Tashjian, “but we also want to understand any limitations to ensure carbon offsets from this technology are accurate.” The project begins in May, but don’t expect results overnight, says Jacobson. “Enhanced weathering doesn’t mean instantaneous,” he says. “Many geologic processes are slow, even ones that are enhanced.” For Sageman, a geologist who has spent his career studying events that happened millions of years ago, this project is a perfect capstone. “Studies of climate change through Earth’s history provided the foundation for realizing the potential of enhanced weathering,” he says. “Building on that work, we now have an opportunity to make the world a better place for our grandchildren.”

Carbon Capturers

Earth and planetary sciences alumni are working at the forefront of climate change mitigation.

Grace Andrews ’14 MS, ’11 PhD is executive director of Houglass Climate, a nonprofit conducting research into mineral-based carbon removal strategies to facilitate responsible technological scaling of the carbon removal industry. Her academic research in professor Andy Jacobson’s lab examined the rates and mechanisms of chemical weathering over geologic timescales.

Tyler Kukla ’16 MS, ’21 PhD is a researcher at CarbonPlan, a nonprofit that analyzes climate solutions based on the best available science. CarbonPlan focuses on carbon offsets, carbon removal and climate risks, with the goal of ensuring scientific integrity and transparency.

Claire Nelson ’18 MS, ’21 PhD also advised by Jacobson, studied basalt weathering in Iceland and then developed a novel carbon sequestration method during her postdoctoral work at Columbia University. It involves injecting CO2 underground into basalt, where it converts into a mineral. This led her to found Cella, a venture capital-backed carbon storage technology startup. As chief technology officer, she is demonstrating the technology in the field.

ALUMS IN THE FIELD

“Injection of CO2...”

Capture

Carbon

...underground into basalt...”

Technology

Northwestern

Spring 2024

Discovery

Climate

Farming the Key

to Carbon Capture?

we need to actively decarbonize. One way to decrease carbon emissions, suggests Earth and planetary sciences professor Andy Jacobson, is to capture atmospheric carbon dioxide (CO2) and lock it away for a few thousand years. Earth science could help with that. The chemical weathering of rocks is a natural process that converts atmospheric CO2 into a stable mineral. Carbon dioxide dissolves in water to form carbonic acid, which breaks down rocks. Chemical weathering liberates calcium and other elements from silicate rocks while transforming CO2 into bicarbonate. Over millions of years, bicarbonate combines with calcium to form calcium carbonate, the building blocks for coral reefs and limestone. This process sequesters carbon in solid form and ultimately serves as Earth’s natural, long-term climate stabilizing mechanism. “Over much shorter human timescales, bicarbonate is a sink for atmospheric CO2,” says Jacobson. “Can we accelerate the weathering process and actively remove carbon from the atmosphere at rates fast enough to help mitigate modern climate change?” Enhanced rock weathering was proposed as a decarbonization strategy decades ago but only recently gained interest. A 2020 Nature article estimated that enhanced weathering could remove up to 2 billion tons of CO2 annually from the atmosphere by 2050. Jacobson is leading an interdisciplinary team of researchers at Northwestern and the Chicago Botanic Garden to investigate this “negative emissions technology” with a two-year demonstration grant from Northwestern’s Paula M. Titusens Institute for Sustainability and Energy. In a series of mesocosms (experimental systems that simulate natural conditions) at the garden, researchers will test the effects from adding different types of crushed rock to soils used to grow various crops. The soil additives will include basalt, a volcanic rock that chemically weathers faster than other rocks and minerals, potentially expediting CO2 capture and storage. “In a greenhouse environment, we can measure the bicarbonate coming out of the mesocosms. And we can trace how much of that bicarbonate is coming from the weathering of silicate minerals,” says Allegra Tashjian, a doctoral student in Earth and planetary sciences. “Crush the rocks, put them on the field and wait. That said, the idea itself is so new that we don’t yet have sufficient empirical data to know the best way to approach it. How will soil amendments affect the soil microbiome and plants, and how much carbon will be converted? Our goal is to answer those questions.” The market for enhanced rock weathering is skyrocketing, with startups already partnering with farmers on carbon offsets. “It’ll be awesome if enhanced rock weathering works well at scale,” adds Tashjian, “but we also want to understand any limitations to ensure carbon offsets from this technology are accurate.” The project begins in May, but don’t expect results overnight, says Jacobson. “Enhanced weathering doesn’t mean instantaneous,” he says. “Many geologic processes are slow, even ones that are enhanced.” For Sageman, a geologist who has spent his career studying events that happened millions of years ago, this project is a perfect capstone. “Studies of climate change through Earth’s history provided the foundation for realizing the potential of enhanced weathering,” he says. “Building on that work, we now have an opportunity to make the world a better place for our grandchildren.”
Combating Food Insecurity

A generous gift from Melih and Zeynep Keyman is fueling research on innovative approaches to monitoring plant health.

Faculty in Northwestern’s Center for Synthetic Biology (CSB) are working toward a unique solution: Researchers are exploring the possibility of using “sense and respond” biosensors that, if successful, could create a state-of-the-art, data-driven soil monitoring system to trigger the release of compounds as needed to ensure plant health.

“The global food crisis presents a great challenge, and we need innovative approaches to help feed the world’s ever-growing population,” Melih Keyman says. “Zeynep and I believe strongly in the work being done at the Center for Synthetic Biology, which can open up new scientific advances in agriculture that will profoundly address the issue of world hunger.”

Using tools from a range of disciplines, synthetic biology allows scientists to rewire, repurpose or reconfigure biological systems to combat some of society’s most pressing problems.

Since its launch in 2016, CSB has become a leader in the emerging field, laying the groundwork for research that can lead to advances in medicine, agriculture, manufacturing and sustainability. Researchers have developed new approaches for drug delivery, data storage methods using DNA and processes for creating synthetic proteins that can be used in products ranging from regenerative medicines to sustainable materials. Several faculty members have also parlayed their discoveries into startup companies, turning ideas into viable products with real-world applications.

“Synthetic biology holds so much potential for innovation to solve complex challenges,” says Eric Perreault, Northwestern’s vice president for research. “We are grateful to the Keymans for recognizing and investing in this dynamic and evolving area of research.”

Existing technologies for soil monitoring face several limitations. Current sensors are low resolution, provide data only by the acre and measure a small number of soil components.

By leveraging the power of biology, Northwestern researchers have been able to repurpose naturally occurring microbial proteins to create high-resolution biosensors that detect more than 100 environmental compounds. With the research funding provided by the Keymans’ gift, this work can be extended to address agricultural needs.

The first step will be to develop sensors that can more precisely monitor relevant soil components — including nitrogen, phosphorus, potassium and other micronutrients — as well as plant stress signals. Then researchers must find a way to encapsulate the platform in a soil environment. The final piece will be to develop a system for remediation, using data from the biosensors to release compounds needed to maintain the health of the crops. Together these measures will allow for a high-tech plant monitoring system that can boost crop production.

“These approaches would not have been possible even two years ago, but new research suggests that our goal of developing biosensors with agricultural applications is achievable today,” says Danielle Tullman-Ercek, who co-directs CSB with fellow professor of chemical and biological engineering Julius Lucks.

With the help of research funding like the gift from the Keymans, we can create new technologies that will help to solve challenges in agriculture and address global needs,” she says.
Strength in Numbers
Members of NU Loyal give to Northwestern year after year, and their gifts have impacted more than 1,500 areas across the University.

A lumnus, parents and friends support Northwestern in many ways, from cheering on the Wildcats to making philanthropic gifts. Anyone who makes a gift of any size for three or more consecutive years is recognized as a member of NU Loyal, the University's largest giving society, with more than 42,000 active donors.

Some members, like Dulce Vasquez ’08 and her husband, David Leuchter ’07, have been giving since they were students or became alumni. When Vasquez, a philosophy student at Weinberg College, Wilson earned her support.

“Growing up, my family was on food stamps. I certainly was not able to pay out of pocket to attend Northwestern without a scholarship.”

Vasquez relied on financial aid and the Gates Millennium Scholars Program to fund her education and graduated debt-free. Today she says, “I give back because I want more students who come from backgrounds like mine to be able to access Northwestern.”

Leuchter also has been a dedicated donor since earning his degree in civil and environmental engineering from the McCormick School of Engineering. “The time I spent at Northwestern was foundational to my life now,” says Leuchter, who is vice president and western U.S. area manager at Mass. Electric Construction Co. “So many friends and important connections in my life, especially Dulce, are a direct result of my time there.”

Vasquez and Leuchter give regularly to Northwestern Engineering, the Wildcat Fund and University scholarships. They shifted their support to the Student Emergency and Essential Needs Fund during the pandemic. Vasquez is also a founding donor to the student performance group Mariachi Northwestern.

Another longtime NU Loyal member is Wendy Wilson ’89, who has been giving to Northwestern for over 20 years. As an English major at Weinberg College, Wilson benefited from scholarships and received financial aid. Today she regularly gives to the University’s scholarship fund. “Having a diverse student body is essential for every student to see beyond and their unique perspective,” says Wilson, who worked most recently as vice president of marketing at ChargePoint.

When Mary Olson-Menzel ’02 MBA, founder and CEO of MVP Executive Development, began giving to Northwestern five years ago, she chose to support the professional school that helped her take steps to advance her career path, the Kellogg School of Management. The NU Loyal member also stays connected with fellow alums through the Kellogg Executive Women’s Network and volunteers through Northwestern’s Alumni Admission Council. “Kellogg gave me the incredible learning and life experiences that helped shape me into the person I am today,” she says.

Collaboration
Revolutionizing the Study of Biology
The new National Institute for Theory and Mathematics in Biology brings together researchers across disciplines.

Northwestern has been awarded $50 million over five years from the U.S. National Science Foundation (NSF) and the Simons Foundation to establish the National Institute for Theory and Mathematics in Biology (NITMB) — the first institute of its kind in the U.S.

NITMB researchers will use mathematics to investigate some of the most important fundamental questions in the life sciences. The institute offers bidirectional opportunities: Discoveries in biology will motivate new developments in mathematics, and vice versa.

The University of Chicago and Northwestern’s key partner in this initiative. Together the two universities will create a nationwide collaborative research community that will generate new mathematical results and uncover the “rules of life.” The institute will foster international collaborations at the interface of the mathematical and biological sciences as well, helping establish a vibrant worldwide research network for decades to come.

“There are many deep questions about human life and all branches of biology,” says Richard Carthew, the Owen L. Cook Professor of Molecular Biosciences in Northwestern’s Weinberg College of Arts and Sciences, who is director of NITMB. “Our goal is to better understand the mathematical basis underlying both the capabilities and constraints of living systems. We hope to revolutionize the study of biology, much like physics has benefited from an alliance with mathematics.”

“We hope to revolutionize the study of biology, much like physics has benefited from an alliance with mathematics.” — Richard Carthew
I Spy Alaska

One of the Archives’ oldest objects is a spyglass (right) used by 19th-century explorers Robert Kennicott and Henry M. Bannister, an 1863 graduate of Northwestern. Kennicott and Bannister were part of a team that explored Alaska in the mid-1860s to investigate the feasibility of running a telegraph cable from North America to Europe by way of Alaska, the Bering Strait and Siberia. Although the idea was ultimately abandoned, the explorers reported their findings to then–Secretary of State William Seward. “The indirect result of their work,” says Leonard, “was the purchase of Alaska from Russia in 1867”—an acquisition derided at the time as “Seward’s Folly.”

The explorers’ spyglass and their journals—with exquisite handwriting and intricate drawings of boats and sled dog trains—from their Alaskan travels were passed down through Bannister’s family until James Alton James, a longtime Northwestern history professor (1897–1935), contacted the family and acquired the artifacts for the University. “His plan late in his career was to write a history of Northwestern,” says Leonard. “He never realized that dream as a publication, but he is the person who began Northwestern’s archival program, so we owe him a great debt of gratitude.”

The typewriter and its case accompanied Geyer all over the world, including to Europe, Asia, the Middle East and Latin America. She interviewed a who’s who of 1980s and ’90s geopolitics: Iraqi president Saddam Hussein; Cuban president Fidel Castro; Palestinian political leader Yasser Arafat; the Ayatollah Khomeini, the supreme leader of Iran; Argentine president Juan Perón; and Libyan political leader Moammar Gadhafi.

Archives also holds the U.S. Army–issued military blouse Geyer wore while reporting in Vietnam, along with a large collection of her personal papers. “Gee Gee Geyer was a delightful woman,” recalls Leonard, “and it was a great honor to become her friend.” On a 1968 Vietnam trip, Geyer met Chicago Cubs star Ernie Banks, who was there entertaining the troops, and they became lifelong friends. Although she eventually relocated to Washington, D.C., Geyer returned regularly to Chicago, where she would host gatherings at the Drake Hotel. On one such occasion, she invited both Leonard and Banks. “I had grown up a Cubs fan, and she knew it would be fun for me to meet him,” says Leonard. “She was a very generous soul who looked out for her pals.”

The Ultimate Wildcat

When Leonard started collecting materials on behalf of the Archives, “I made a list of people whose materials I’d really like to get,” he says. “Otto Graham was at the top of that list.” Unquestionably the greatest athlete in Northwestern history, Graham ‘44 came to the University from Waukegan, IL, on a basketball scholarship. “During his freshman year, he was playing intramural football over at Long Field,” says Leonard. “The story goes that he was discovered by one of the football coaches. And so Otto came out for football as a sophomore. He was outstanding from his first game, ultimately winning All-American honors in both basketball and football. He was also a very fine outfielder on the Northwestern baseball team and even Northwestern’s intramural ping-pong champion.”

“After leaving Northwestern to serve in the U.S. Navy during World War II, he played one season of professional basketball, and his team [the National Basketball League’s Rochester Royals] won the championship [1945–46] in a precursor to today’s NBAs. Then, as quarterback for the Cleveland Browns, he became one of the all-time greats in professional football. Graham kept track of his accomplishments in scrapbook form, and his family generously gave a large collection of those scrapbooks to Archives.” (See detail on page 25.) The holdings also include films, sound recordings and other objects and records associated with Graham’s career, including the 1943 Chicago Tribune Silver Football (above), awarded to the Big Ten’s best player.

(Continued on page 24)
Kevin Leonard’s Deering Library office is filled with objects that hold special meaning to him or the University. Here are a few fun items found on his shelves:

1. **Conversation Starter**
   - During a clean-out of Cahn Auditorium, the theater department offered University Archives a massive painted backdrop from The Waa-Mu Show. Leonard declined, but when he saw a large wooden brace painted with the words “People Are No Damn Good!” — the name of a Waa-Mu Show skit — he had to have it. “I ripped it off the canvas, sawed it down to size and brought it back to my office.”

2. **Breakfast of Champions**
   - To commemorate Northwestern’s thrillingly (and surprisingly) successful 1995 football season, Wheaties featured the Big Ten champs on its cereal box. The archived Wheaties boxes include one with an intact bag of cereal.

3. **A Stand-Up Guy**
   - Former Northwestern All-American basketball player Joe Ruklick ’59, ’90 MS was a frequent patron of University Archives and a regular at Wildcats’ men’s basketball games. He and Leonard became good friends. Sadly, Ruklick died in September 2020. When Northwestern offered fans the opportunity to purchase life-size cardboard cutouts to fill Welsh-Ryan Arena during COVID-era games, Leonard paid to have Ruklick’s cutout in the stands. “I thought it would be nice to have Joe watching a game,” Leonard says. “Now I keep it here as a reminder of a good friend.”

4. **Automatic Otto**
   - During a previous renovation of Ryan Field, Northwestern Athletics asked Leonard if he wanted any memorabilia from the trophy cases that were filled with Otto Graham’s awards. Leonard, who is a huge Graham fan, gladly took the bust and the 1943 Chicago Tribune Silver Football (see page 21), which was awarded to the Big Ten Conference’s best player.
The Queen of Fresh Prince

Best known as Aunt Vivian on the 1990s TV series The Fresh Prince of Bel-Air, Daphne Maxwell Reid ’70 has had a prolific, successful career in TV and film. But what people might not know, Leonard says, is that she is incredibly multitalented and broke significant early barriers — and luckily, “we’ve been able to document all facets of her career, from a very young age to the present.”

Maxwell Reid became the University’s first Black homecoming queen in 1967 and months later she joined the cohort of Black students who occupied the Northwestern Bursar’s Office in 1968. She began working as a fashion model while still a student and was the first Black professional model featured on the cover of Glamour in 1969 (above). Maxwell Reid designed and sewed much of her own clothing for auditions and worked with the McCall Pattern Company to create the Daphne Maxwell Reid Collection. She is also a photographer who has published several photo collections.

“We have scripts, awards and other artifacts from her television career,” says Leonard, as well as original clothing that she created for her McCall’s line and her photography books, calendars and cookbooks. “We even have her baby book!”

Soap Opera Legend

Creator of the long-running daytime series All My Children, Agnes Nixon ’44 was one of the most successful writer-producers in the history of soap opera television. Archives holds a large collection of her personal papers and professional records.

“Agnes came here in the 1940s to study theater,” says Leonard. “When she looked around at her theater cohort at the time — including Patricia Neal ’47, ’94 H, Charlton Heston ’45 and others who would go on to successful movie careers — she thought, ‘Maybe I should find some other path.’ So, she became a writer.”

While a student, Nixon wrote a semi-autobiographical radio play that channeled her grief about losing her fiancé in World War II. Now, a treasured archival artifact, the script for No Flags Flying led to a job writing for serial broadcast pioneer Irna Phillips, which in turn led to Nixon’s long and illustrious TV writing career. In 2010 Nixon won the Daytime Emmy Award for Lifetime Achievement (below center), and when she returned to campus four years later to receive an Alumni Merit Award, she brought Leonard to the ceremony as her plus-one.

“When she arrived and got out of her car, she handed me that Emmy,” he recalls. “I was too timid to put it down the whole night, so people thought I was an Emmy winner and kept coming up to congratulate me.” Her legacy lives on through Northwestern’s Agnes Nixon Playwriting Awards, established in 1981.

What the Dawk Is That?

Among the more unusual objects in the Archives is this motorized, foot-tapping, silent protest doll — a Dawk (right) — as featured in The Lloyd Thaxton Show, a 1960s nationally syndicated TV program promoting rock, pop and R&B music. “Lloyd Thaxton ‘50 had served in the U.S. Navy at the end of World War II and came here on the GI Bill,” says Leonard. “He had a huge, antics personality and became a radio disc jockey.” In addition to his eventual career as a TV host, he co-founded Tiger Beat, a teen magazine that ran for more than 50 years, starting in 1966.

When his widow agreed to place Thaxton’s archival records at Northwestern, she also donated his military-issued grave marker (see detail on page 25). “I visited her home, and she pointed to this grave marker in her yard and told me that Lloyd wanted to be buried under his favorite tree,” Leonard recalls. “After pausing to let that sink in for a minute, she said, ‘But he’s not buried there.’ He was buried in a traditional cemetery, so she had put his grave marker under the tree instead. It’s a little unusual as an archival item, but it’s a future display item and a way of paying tribute to Thaxton and his service to the nation.”

Kingsley Day is a freelance writer and editor and the former lead publications editor in Northwestern’s Office of Global Marketing and Communications.

WHAT MAKES THE CUT?

Is there a secret to judging whether something is archives-worthy? First of all, Kevin Leonard says, University Archives is the official repository for “anything related to the high-level administrative functioning of the University.” Official publications — The Daily Northwestern, newsletters, Northwestern alumni magazines — are also automatically included. When it comes to personal papers, Leonard looks for “things that relate to the research and curricular strengths of the University.” Beyond that, “If it looks interesting and will bring people into Deering Library to do research, I go for it.”
Northwestern experts share the ABCs of early learning.

BY CLARE MILLIKEN
ILLUSTRATIONS BY PETER AND MARIA HOEY

We all want to give children the best possible foundation. Northwestern researchers and alumni across disciplines are working hard to understand how kids learn best, what tools and activities can bolster their development, and how families can use that information to help children reach their full potential.

**Courtney King Blackwell ’10, ’15 PhD:** associate professor of medical social sciences at the Feinberg School of Medicine whose research focuses on early childhood well-being

**Sarah Pila-Leiderman ’20 PhD:** research assistant professor of medical social sciences at Feinberg who studies the intersection of technology and child development

**Onnie Rogers:** associate professor of psychology at the Weinberg College of Arts and Sciences who researches children’s identity development

**Terri Sabol:** associate professor of human development and social policy at the School of Education and Social Policy and former first grade teacher who researches early childhood education and policy

**Jennifer Schwarz ’98 MA, ’05 PhD:** vice president of learning and public programs for the Chicago Botanic Garden

---

**Support Interactive Play**

“The concern that kids lost out academically during the pandemic is leading preschools to push out play and focus more on rote instruction, which is misaligned with how we know children develop and grow,” says Sabol. “Not to say that academics are not important, but our research shows that play helps young children develop creativity, curiosity and problem-solving skills.”

**Open Their Eyes**

If you’re going for a walk with a child, make observations about the nature around you. Splash in puddles or grab a handful of leaves and explain that rain makes puddles and leaves fall from trees. Allow children to explore the world around them.

**Get Outside**

Experiences in nature are “really important to kids’ development,” says Schwarz. Unstructured time outside — digging in the garden or standing on a hill of snow — teaches children to take calculated risks.

**Put Down Your Phone and Be Present**

Engagement with parents and primary caregivers protects young children from stress and promotes well-being. Engagement can be simple: Count how many cars go by while driving with young kids. Identify colors or sounds in your surroundings. Use tub toys with your child during bath time.

**Support Interactive Play**

"The concern that kids lost out academically during the pandemic is leading preschools to push out play and focus more on rote instruction, which is misaligned with how we know children develop and grow," says Sabol. "Not to say that academics are not important, but our research shows that play helps young children develop creativity, curiosity and problem-solving skills."
Keep It Relatable
Young kids don’t understand concepts like race or ethnicity in the abstract; they understand them in what they observe, so keep things connected to their lived experiences. “If you ask a 5-year-old, ‘What is race?’ without providing any context, they might say, ‘I’m going to [run faster than] you,’” Rogers says. “But if you talk about the concept of race by discussing where your family is from, the different skin colors in your community, the cultural traditions you celebrate, you can describe what race and ethnicity look like and how they are experienced.”

Do TV Time Together
Prescreen a children’s show to make sure it’s not too scary or fast-paced. Ideally, watch the show with the child and ask questions — for instance, “Why is Elmo sad?” — to help kids understand what they’re seeing.

Avoid Background Noise
If no one is watching the TV, turn it off. Having screens on in the background prevents play and interrupts opportunities to engage with your child and help them develop language.

Rewind and Repeat
Little kids love repetition, which might mean rewatching the same 20-minute video. They’re consolidating information every time they watch, says Pila-Leiderman. Familiarity is also good. Young kids learn more from beloved characters like Elmo or Dora than from a brand-new character.

Talk About the Tough Stuff
There are ways to ensure a conversation is developmentally appropriate and supports learning, even when broaching difficult topics. “When kiddos feel connected to you, they’re paying attention,” Rogers says. “So when it comes to talking about issues of racism or sexism or violence — heavy, complex topics — [that] foundation is key.”

Find a Balance
“No one wants to terrify their kid,” Rogers says, “but awareness about the world is important.” If you’re explaining a violent event to young children, Rogers suggests being specific and saying something like, “There’s this area of the world where violence is happening. What’s upsetting mom right now is that a lot of people are getting hurt, and it’s scary and sad.” Children can then ask questions, build empathy and learn beyond their immediate experiences.

Encourage Collaboration
Among young children, engaging with peers helps boost learning. In a study by Blackwell, young children who shared an iPad performed better on literacy tests than those who had their own iPad or didn’t have an iPad at all. “When they shared iPads, they communicated with each other. … They had to negotiate, they had to take turns,” Blackwell says. “When the kids were using the iPads on their own, there was no engagement with others.”
When his dreams of directing theater fizzled, Art Johnston instead became the leader of a legendary gay bar — and a relentless advocate for LGBTQIA+ rights. By Diana Babineau

Photographs by Zoe Rain
ART JOHNSTON LEANS FORWARD ON HIS BARSTOOL AND SETS THE SCENE.

It was June 1977, and singer Anita Bryant was scheduled to perform at Chicago’s Medinah Temple. Leveraging her celebrity status, the TV commercial star and former Miss America runner-up was also promoting her national anti-gay political campaign.

“She had enormous cultural influence,” says Johnston. That year, Dade County, Fla., where Bryant lived, had passed an ordinance that made discrimination based on sexual orientation illegal. “But because of her influence, the voters turned back the law,” he recalls.

In response to Bryant’s Chicago tour stop, queer activists in Chicago planned a protest. Johnston joined the organizing team. On June 14, the day of the event, he saw something he’d never imagined possible: 5,000 queer people and allies, picketing in the streets in broad daylight.

“The idea of marching — outside, in the daylight, in downtown Chicago — it was exhilarating in a way I had never felt in my life,” he says. “And I wasn’t the only one. You could see it in people’s eyes. It was like we were present at an awakening. Suddenly we’re marching with thousands of other people — more gay people than I’ve ever seen, more gay people than I knew existed. Suddenly, we all started thinking, ‘This has … power.’ ”

Arriving in Evanston in 1972, Johnston planned to get his degree and return to Virginia. But when the boarding school’s new headmaster eliminated Johnston’s job, “I felt completely lost,” he says.

His theater department friends wouldn’t let him mope. They dragged him out for an evening on the town. Johnston had never before ventured into Chicago — or into a gay bar for that matter. He was stunned. “I didn’t know there were that many gay people in the world, let alone in a few bars in Chicago,” he says. That night, he met José “Pep” Peña, a charismatic bartender, and “instantly fell head over heels in love.”

Today Sidetrack occupies nearly half a city block in Chicago’s Boystown neighborhood. Formerly known as Boys town, the queer capital of the city. Inside, the bar boasts eight separate rooms, each with its own vibe — some neon-lit and loud, others quieter. Rainbow-painted stairs lead to a rooftop patio. The walls are lined with dozens of TV screens, all perfectly synced, cycling through pop hits from Sidetrack’s 40-plus years of music video archives.

On this Monday afternoon, Johnston sits at a high-top table, the video for Billy Joel’s “Uptown Girl” playing at a low volume behind him. As he speaks, it is easy to see the love he has for his bar, his staff (many of whom have worked here for decades), his patrons, and, most of all, his business partner and husband.

And it’s impossible to tell the story of how Sidetrack and this neighborhood — and Chicago itself — became a hub for LGBTQ+ people without telling Johnston’s story.

Art’s Two Loves

The first in his family to attend college, Johnston grew up in the blue-collar town of North Tonawanda, N.Y., near Niagara Falls. “My parents worked very hard, but they were very poor,” he says. “They couldn’t afford to send me to college.”

But Johnston and his husband, José “Pep” Peña, are perhaps most widely known as co-owners of the largest gay bar in the Midwest: Sidetrack.

Today Sidetrack occupies nearly half a city block in Chicago’s Boystown neighborhood. Formerly known as Boys town, the queer capital of the city. Inside, the bar boasts eight separate rooms, each with its own vibe — some neon-lit and loud, others quieter. Rainbow-painted stairs lead to a rooftop patio. The walls are lined with dozens of TV screens, all perfectly synced, cycling through pop hits from Sidetrack’s 40-plus years of music video archives.

On this Monday afternoon, Johnston sits at a high-top table, the video for Billy Joel’s “Uptown Girl” playing at a low volume behind him. As he speaks, it is easy to see the love he has for his bar, his staff (many of whom have worked here for decades), his patrons, and, most of all, his business partner and husband.

And it’s impossible to tell the story of how Sidetrack and this neighborhood — and Chicago itself — became a hub for LGBTQ+ people without telling Johnston’s story.

Arriving in Evanston in 1972, Johnston planned to get his degree and return to Virginia. But when the boarding school’s new headmaster eliminated Johnston’s job, “I felt completely lost,” he says.

His theater department friends wouldn’t let him mope. They dragged him out for an evening on the town. Johnston had never before ventured into Chicago — or into a gay bar for that matter. He was stunned. “I didn’t know there were that many gay people in the world, let alone in a few bars in Chicago,” he says. That night, he met Pep Peña, a charismatic bartender, and “instantly fell head over heels in love.” The two started dating.

“I knew I was the luckiest human being in the world,” Johnston says. “Pep came home with me one night to my Evanston apartment and never left.”

So Johnston looked to extend his time in Chicago and at Northwestern. Dreaming of becoming a theater director, he successfully lobbied the head of the theater department to convert his one-year master’s program into a three-year master of fine arts in directing. Upon graduating, Johnston taught the “Cherubs” in the National High School Institute theater program. And in 1978 he co-founded the Dyad Theatre Company with Judith Rieser ’68, ’82 PhD. Dyad was “the culmination of six years of planning and hope,” Daniel Rubin ’78, ’80 MS wrote in The Daily Northwestern that year.

Johnston had fulfilled his dream, he thought. But when the reviews came in for Dyad’s shows, they were … so-so.

“I’ve never talked about this,” he says, furrowing his brow. “I had to confront the fact that I was not as good as I thought I was. Everything I’d directed had been successful in that the people in my shows had loved it. But the shows didn’t get the rave reviews I wanted. A professor once said to me, ‘The fact that your actors like you does not make it a good production.’ That was really hard to hear.”

Until recently, Johnston viewed this as a failure. But looking back, he sees that experience as indicative of his talent for bringing people together and motivating them to act — in both the theatrical and political sense.

“Tao was always successful in building the team,” he says. “It was always about the people for me.”
Art Gets Sidetracked

In 1982 Johnston and Peña co-founded Sidetrack, a gay bar with an innovative, musical twist. On opening night, they set up a single projector screen and began playing songs they loved, set to visuals from old films. “We rented VHS tapes,” recalls Peña. “This was before Blockbuster. … The first video we ever played was the 1953 film The War of the Worlds, which had great sci-fi visuals, set to music from Jeff Wayne’s 1978 album by the same name. It was an obvious pairing, but it worked really well.”

The windowless, 800-square-foot room with no sign on the front door — so as not to draw unwanted attention — soon became a nightlife hotspot. “We ran out of beer on the first night,” Johnston says. After that, “we were jammed every night of the week … except for Mondays.”

That gave Peña an idea: On Mondays, he suggested, they should host a show tunes singalong night. “And I said, ‘That’s a terrible idea,’ ” Johnston says, laughing at how wrong he turned out to be. In fact, Peña’s idea was so successful that bars across the country copied the format. (See “In the VJ Booth,” page 36.)

Sidetrack’s popularity, however, also made it a target. In the late 1970s and early ’80s, Johnston and Peña faced a hostile, homophobic environment. No Illinois laws prevented discrimination against LGBTQIA+ people. “Being gay, or even being perceived as being gay, meant being excluded from jobs [and housing], and it also meant facing police harassment or arrests,” says Timothy Stewart-Winter, author of Queer Clout: Chicago and the Rise of Gay Politics. Up until the late ’70s, police often raided gay bars and arrested people for being there. Though the frequency of such raids dwindled in the ’80s, Johnston and Peña were both jailed at various times.

“We just accepted our second-class citizenship, which was sad. But that was just the way it was,” Johnston says. Still the Sidetrack owners persevered. In the mid-1980s they bought the building that Sidetrack occupied and expanded the bar over time. In 1994 they finally put up a sign. Sidetrack became a refuge for those who had no other place to be themselves. It also provided a space for Johnston and like-minded activists to strategize and gather strength for the civil rights fights ahead.

In Times of Crisis

Johnston’s talent for rallying his community and creating spaces of mutual care proved vital through the HIV/AIDS crisis in the 1980s. The virus, which emerged in the U.S. in 1981, began claiming the lives of gay men and other minorities at a disproportionate rate. Fear and confusion reigned, with no clear public health guidance about how to avoid contracting or transmitting the virus. Meanwhile, widespread stigma left many people with HIV/AIDS feeling completely abandoned. Johnston’s tone is somber but resolute as he recalls this dark time. “We lost over half our staff,” he says grimly. “We had trouble even getting funeral homes to bury us.”

The community they’d built felt as though it might crumble. But Johnston took action. After it became clear that sexual contact was a primary mode of HIV transmission, Johnston asked a Chicago public health clinic to disseminate safe sex information. The clinic refused. “One of the horrible things that AIDS taught us is that we can truly only rely on each other,” Johnston says. “We had to save ourselves.”

So Johnston called other cities’ health departments and received permission to reprint their safe sex materials. He and Sidetrack staff distributed the materials and handed out condoms to bar-goers. They also partnered with Open Hand Chicago, a program that delivered meals to those who were ill, as well as the Chicago chapter of ACT UP, an AIDS activist group that challenged institutions to respond to the crisis. For several years, Sidetrack held fundraising nights, where “every penny that came in went to the organizations,” says Peña. “We learned resilience,” Johnston says. “We learned how the government works. We learned to register voters and to run people from our community for office — that’s why we have marriage and other rights today. We learned how to have influence.”

Art Joins the Gang

Johnston says his proudest achievement was lobbying for passage of the 1988 Chicago Ordinance for Human Rights, which prohibited discrimination based on sexual orientation, disability, marital status, race, age, religion and more. First introduced in 1973, the legislation stalled for a decade. To revive the ordinance, activists formed the Gay and Lesbian Town Hall, which Johnston joined. He and his
“The idea of marching — outside, in the daylight, in downtown Chicago — it was exhilarating in a way I had never felt in my life. And I wasn’t the only one. You could see it in people’s eyes. It was like we were present at an awakening.”

— Art Johnston

three main organizing allies, Laurie Dittman, Rick Garcia and Jon-Henri Damski, the powerhouse of the group, were dubbed the “Gang of Four” by local newspapers.

Chicago Mayor Harold Washington ’52 JD voiced his support for the ordinance, and a vote was set for July 29, 1986. The Gay and Lesbian Town Hall planned a rally at Chicago’s Daley Plaza a few days before the vote and suggested closing all gay bars that day to encourage people to attend.

Johnston opposed the idea; instead, he said, keep the bars open and provide transportation to the rally. “The idea of marching — outside, in the daylight, in downtown Chicago — it was exhilarating in a way I had never felt in my life. And I wasn’t the only one. You could see it in people’s eyes. It was like we were present at an awakening.”

— Art Johnston

Notably, Johnston “insisted that the Illinois bill include gender identity,” says Stewart-Winter. “That was a really big deal at the time, to care about trans people.”

Johnston has continued that commitment to inclusion. In 2014 he and a friend created OUTspoken, a monthly storytelling show at Sidetrack that received Chicago’s LGBT Hall of Fame recognition in 2023. This spring Johnston, Peña and their friends Eddie Moore and Kevin Hauswirth (executive producer of the 2022 documentary Art and Pep) are opening the city’s first queer- and person of color–owned dispensary, called Sway, right across the street from Sidetrack. During the AIDS crisis, Johnston notes, queer people who were sick used cannabis to ease their pain.

“It used to be a cop bar; he says of the Sway space. “You can’t have a better origin story than this. The gays are buying cannabis to ease their pain.”

In 2006. “We decided early on that there’s somebody at home who’s got eight other things that could follow it. Whatever the next fight is, whatever the next obstacle. And I’m ready for whatever the next fight is.”

Throughout it all, it is love that has sustained him. “Pep makes me laugh every day. And to know that, no matter how much crap I fall into, no matter what happens — to know that there’s somebody at home who loves you? Oh, my God,” Johnston says, looking over at his partner of 50 years. “What a remarkable thing.”

Diana Babineau is senior editor and writer in the Office of Global Marketing and Communications.
Five Questions with Maya-Camille Broussard ’04 MA
Owner of the Chicago-based bakery Justice of the Pies and star of Netflix’s Bake Squad, Broussard talks inspiration, accessibility and her fave pie flavors.

What do you love about being one of the four bakers on Bake Squad? I love that it’s a friendly competition. We don’t win anything. There’s no money involved. Each of us is tasked with baking a beautifully designed dessert for a special event, such as a birthday or wedding, and then the guest client chooses their favorite dessert. The joy we get from seeing the client be absolutely amazed with what we’ve created for them—that’s the value for us.

Social justice is baked into the name of your business. What issues are important to you? I am an advocate for people living with disabilities because I have an invisible disability and I understand how it feels to not be accommodated. So I made sure that the brick-and-mortar store for Justice of the Pies was accessible. We have a wheelchair ramp and Braille on all our signage. Each room has a different textured floor, so anyone with a walking cane can determine the space they are in simply from the floor texture. The countertops are accessible in height too.

We also fight food insecurity by providing culinary workshops for children who reside in lower-income communities that are affected by food apartheid. The goal is to help children become more self-sufficient in the kitchen.

You founded Justice of the Pies in honor of your father. Did you grow up baking together? It wasn’t until after my father [criminal defense attorney Stephen J. Broussard ’70, ’73 JD] passed away in 2009 that I began baking pies. My father was obsessed with baking pies. But I never really baked with him; rather, it was my Aunt Sandy who baked cakes and cookies with me. My dad loved to hear his recipes, and he would not share them with me, probably because he wanted me to come up with my own!

You published a cookbook! What are your favorite recipes? Justice of the Pies: Sweet and Savory Pies, Quiches and Tarts + Inspirational Stories by Exceptional People features people whom I consider to be stewards for equality and justice. There are profiles of them in the book alongside recipes I created inspired by them. For example, my ginger, carrot and asparagus quiche is inspired by Lauren Bush Lauren, co-founder of FEED, an organization that fights to end childhood hunger. The strawberry basil key lime pie is one of my most creative flavors. And the deep-dish chilaquiles quiche is one of my favorites because I love the flavor of corn tortillas mixed with my quiche custard, savory black beans and homemade salsa.

How have you used your Northwestern degree? My master of arts in theater has been important to my career because I am essentially a storyteller. People don’t always buy what you make—they buy why you make it. One of my favorite professors was Rives Collins. In his storytelling class I learned about the nuances that come into play when you are sharing a story, and I’ve applied that to how I tell stories through food. So when I’m crafting a new recipe, I’m always thinking, “How can I tell a story on a plate?”

You grew up baking pies. Did you inherit your love for the kitchen from your father? It wasn’t until after he passed away in 2009 that I began baking pies. My father was obsessed with baking pies. But I never really baked with him; rather, it was my Aunt Sandy who baked cakes and cookies with me. My dad loved to hear his recipes, and he would not share them with me, probably because he wanted me to come up with my own!

Social justice is baked into the name of your business. What issues are important to you? I am an advocate for people living with disabilities because I have an invisible disability and I understand how it feels to not be accommodated. So I made sure that the brick-and-mortar store for Justice of the Pies was accessible. We have a wheelchair ramp and Braille on all our signage. Each room has a different textured floor, so anyone with a walking cane can determine the space they are in simply from the floor texture. The countertops are accessible in height too.

We also fight food insecurity by providing culinary workshops for children who reside in lower-income communities that are affected by food apartheid. The goal is to help children become more self-sufficient in the kitchen.

Music From the Deep
A film director knows that music has the power to take viewers on an emotional journey. For independent filmmakers Collins Davis ’11 and Matthew Valdez Litwiller ’11, this rings especially true. Music is integral to the plot of their in-progress feature film, Down Below.

The film follows Alex, a classical composer experiencing writer’s block after a public meltdown. Seeking inspiration, Alex visits her family’s Midwestern lake house, where she hears a mysterious sound emanating from the bottom of the lake. As the sound grows louder, she begins to lose her grip on reality. Davis and Litwiller, the film’s co-writers and directors, say the sound functions as “an important character in the film.” Once they developed the script, music was their top priority, an unusual

Dancing with Data
From left, Kate Elswit ’02, Harmony Bench and master Dunham dance technique teacher Rachel Tavernier discuss motion capture as certified Dunham technique teacher Colla Bonametti demonstrates. In their 2023–25 project Visceral Histories, Visual Argument: Dance-Based Approaches to Data, Elswit and Bench investigate how dance-led approaches to data can enhance understandings of history, making visible the knowledge acquired and transmitted through bodily experiences. The demonstration recording took place in January 2023 at the Advanced Computing Center for the Arts and Design at Ohio State University, in collaboration with the research project Artificial Intelligence for Creative Movement Analysis and Synthesis. Elswit is a professor at London’s Royal Central School of Speech and Drama. Read more on page 52.
MEMO

Leading Lady
by Charles Busch

Tony Award-nominated writer and Broadway playwright Charles Busch ’76 contains multitudes. The author of Vampire Lesbians of Sodom, one of the longest-running plays in off-Broadway history, Busch is also a cabaret performer, actor, director and drag legend. In Leading Lady: A Memoir of a Most Unusual Boy, Busch details his journey into the world of drag. Upon arriving at Northwestern, Busch writes in his book, he was determined to “be a force to be reckoned with” in the theater department. His breakthrough moment came when he starred in Sister Act, a play he wrote as a student. He and his roommate Ed Tassaig ’76 “strapped into a red sequined [conjoined twins] costume with matching curly red wigs, fishnet stockings and platform shoes,” Busch writes. “For the first time … I felt comfortable onstage.”

In the book, Busch shares memories of his ever-changing relationship with Kansas City Chiefs player Travis Kelce. “I had never watched the NFL,” West admits. “Now I’m watching football every single weekend, and I can’t believe I’m saying this, but I’m a fan.”

West is covering Swift’s Eras Tour, which runs through 2024. It’s a round-the-clock job, especially because Swift is known for making surprise announcements about new music and concerts. West knows he might have to drop everything for a story.

“She really — in an exciting way — kind of controls my life,” he says. “I am truly living a dream job that I am grateful for every day.”

Read more at alummag.nu/West.
Bryan West ’11 has good reason to hog the spotlight these days—he’s the first journalist assigned full-time to the Taylor Swift beat for USA Today. Learn more on page 40.

At Northwestern, we believe our world-class education should be accessible to the very best students, regardless of their economic background. Support from alumni and friends ensures that we can continue to provide comprehensive financial aid packages to undergraduate students for years to come.

Annual gifts for scholarships transform the lives of our talented students, opening doors to a lifetime of opportunities.

Support scholarships for Northwestern students at giving.nu/SupportNUScholarships.
2,187

Career points scored by guard Boo Buie ’23, who became Northwestern’s all-time leading scorer in February. Buie earned first team All-Big Ten honors in his final season.

Read more on page 12.